Using Genetic Mutations To Cure Heart Disease Essay
Researchers from Stanford University School of Medicine and the Palo Alto Veteran Affairs Health Care System have established a section of genetic mutations which govern cholesterol levels in the body and may also guide the development and use of cardiovascular and diabetes drugs. This data was obtained from the DNA composition of about 300, 000 veterans.
The scientists were able to isolate about three mutations which cause disruption in how the respective genes function. Despite how bad it sounds, this isolation was actually beneficial to the veterans who took part in this research. They exhibited improvement in their blood’s cholesterol profiles and showed significantly reduced risks of experiencing heart disease, diabetes, or even abdominal aortic aneurysm. This was dependent on the specific gene mutation conducted. Using Genetic Mutations To Cure Heart Disease Essay.
Genetically Engineered Medication
Tim Assimes, MD, Ph. D. , an associate professor of cardiovascular medicine led the research. He pointed out that the idea of the research was to use genetic data which has been linked to electronic health records and obtained from a significantly large number of individuals in order to identify genetic variants which then improved lipid profiles and provided protection against cardiovascular diseases. Thus they were able to engineer targeted drugs for improvement.
Three main genes were pinpointed by the study- PDE3B, PCSK9, and ANGPTL4. One day, each of these could be targeted to treat either heart disease, abdominal aortic aneurysm or diabetes, in that order. The most intriguing mutation was however noted in PDE3B. Assimes took note of this due to the presence of a drug named cilostazol. Using Genetic Mutations To Cure Heart Disease Essay. This drug mimics the mutation in that gene which is beneficial hence putting the drug in a very strong position for use in the treatment of heart disease. The lead authorship of the study was shared with Derek Klarin, MD, who is a clinical fellow in surgery at Harvard, together with Scott Damrauer, MD, an assistant professor of surgery at the University of Pennsylvania and the Corporal Michael Crescenz VA Medical Center found in Philadelphia.
ORDER A PLAGIARISM-FREE PAPER NOW
The Million Veteran Program
Klarin, Damrauer, and Assimes used the power of numbers to identify the molecular factors which hold an influence on the levels of cholesterol in the blood. They also used the national research initiative established at the Veterans Health Administration, named Million Veteran Program, whose aim is to discover the genetic determinants which result in health and disease among United States Veterans, to pool genetic information.
This was done through the use of cholesterol readouts from 297, 626 candidates. From this, they tried to find variants which had a role in cholesterol levels. The study was then able to underline 188 previously identified cholesterol genetic markers and was able to identify 118 previously undiscovered markers. Using Genetic Mutations To Cure Heart Disease Essay.
The researchers then decided to zero in on a narrow silver of rare genetic irregularities for further analysis. This was conducted through the use of a technique known as PheWAS, phenome-wide screen. It was already established that these gene mutations have an effect on cholesterol. However, their intention was to further establish whether these mutations could also affect the risk of development of other diseases. This technique is used to glean information on risk of disease from vast databases of genetic information which is linked to electronic health records.
The scientists noted that each of the mutations had a favorable sway on the veterans’ cholesterol levels. However, the difference was in how it had an effect on their exposure to risk from other diseases. The PDE3B mutation resulted in increased protection against heart disease. The PCSK9 mutation both decreased the risk of heart disease as had been previously established, but also the risk of abdominal aortic aneurysm. The mutation of ANGPTL4 led to a dampening of the risk for Type 2 diabetes.
Loss-of-Function Variants
Each of these mutations works as ‘loss-of-function’ variants. This means they are used to either substantially reduce or completely halt the function of the gene. Thus, this establishes a good case for the development of drugs which mimic the functioning of these mutations. For instance, if the risk of heart disease is significantly reduced by having a faulty PDE3B gene, it becomes a promising pharmaceutical inspiration. The researchers in this study associated the PDE3B mutation with higher HDLs, lower triglycerides and a 20 percent less risk of heart disease.
Despite the efforts made by this research to identify new targets of curbing heart disease, the researchers advised caution against prescribing drugs simply for this purpose. The genetics simply suggest a reduction of triglycerides to reduce the risk of heart disease. However, this should be established after a randomized clinical trial, looking specifically at outcomes of heart disease.
The researchers pointed to how previous information has turned out to be misleading. Despite how good cholesterol profiles may appear, the main objective of the drug should be to bring out the intended outcome, which in this case is a heart attack. However, they hope that this will not be the case with cilostazol. Using Genetic Mutations To Cure Heart Disease Essay.
Although there are many possible causes of human disease, family history is often one of the strongest risk factors for common disease complexes such as cancer, cardiovascular disease (CVD), diabetes, autoimmune disorders, and psychiatric illnesses. A person inherits a complete set of genes from each parent, as well as a vast array of cultural and socioeconomic experiences from his/her family. Family history is thought to be a good predictor of an individual’s disease risk because family members most closely represent the unique genomic and environmental interactions that an individual experiences (Kardia et al., 2003). Inherited genetic variation within families clearly contributes both directly and indirectly to the pathogenesis of disease. This chapter focuses on what is known or theorized about the direct link between genes and health and what still must be explored in order to understand the environmental interactions and relative roles among genes that contribute to health and illness.
GENETIC SUSCEPTIBILITY
For more than 100 years, human geneticists have been studying how variations in genes contribute to variations in disease risk. These studies have taken two approaches. The first approach focuses on identifying the individual genes with variations that give rise to simple Mendelian patterns of disease inheritance (e.g., autosomal dominant, autosomal recessive, and X-linked) (see Table 3-1; Mendelian Inheritance in Man). The second approach seeks to understand the genetic susceptibility to disease as the con sequence of the joint effects of many genes. Each of these approaches will be discussed below.
TABLE 3-1
In general, diseases with simple Mendelian patterns of inheritance tend to be relatively uncommon or frequently rare, with early ages of onset, such as phenylketonuria, sickle cell anemia, Tay-Sachs disease, and cystic fibrosis. In addition, some of these genes have been associated with extreme forms of common diseases, such as familial hypercholesterolemia, which is caused by mutations in the low-density lipoprotein (LDL) receptor that predispose individuals to early onset of heart disease (Brown and Goldstein, 1981).
Another example of Mendelian inheritance is familial forms of breast cancer associated with mutations in the BRCA1 and BRCA2 genes that predispose women to early onset breast cancer and often ovarian cancer. The genes identified have mutations that often are highly penetrant—that is, the probability of developing the disease in someone carrying the disease susceptibility genotype is relatively high (greater than 50 percent). Using Genetic Mutations To Cure Heart Disease Essay. These genetic diseases often exhibit a genetic phenomenon known as allelic heterogeneity, in which multiple mutations within the same gene (i.e., alleles) are found to be associated with the same disease. This allelic heterogeneity often is population specific and can represent the unique demographic and mutational history of the population.
In some cases, genetic diseases also are associated with locus heterogeneity, meaning that a deleterious mutation in any one of several genes can give rise to an increased risk of the disease. This is a finding common to many human diseases including Alzheimer’s disease and polycystic kidney disease. Both allelic heterogeneity and locus heterogeneity are sources of variation in these disease phenotypes since they can have varying effects on the disease initiation, progression, and clinical severity.
Environmental factors also vary across individuals and the combined effect of environmental and genetic heterogeneity is etiologic heterogeneity. Etiologic heterogeneity refers to a phenomenon that occurs in the general population when multiple groups of disease cases, such as breast cancer clusters, exhibit similar clinical features, but are in fact the result of differing events or exposures. Insight into the etiology of specific diseases as well as identification of possible causative agents is facilitated by discovery and examination of disease cases demonstrating etiologic heterogeneity. The results of these studies may also highlight possible gene-gene interactions and gene-environment interactions important in the disease process. Identifying etiologic heterogeneity can be an important step toward analysis of diseases using molecular epidemiology techniques and may eventually lead to improved disease prevention strategies (Rebbeck et al., 1997).
As opposed to the Mendelian approach, the second approach to studying how variations in genes contribute to variations in disease risk focuses on understanding the genetic susceptibility to diseases as the consequence of the joint effects of many genes, each with small to moderate effects (i.e., polygenic models of disease) and often interacting among themselves and with the environment to give rise to the distribution of disease risk seen in a population (i.e., multifactorial models of disease). This approach has been used primarily for understanding the genetics of birth defects and common diseases and their risk factors. As described below, several steps are involved in developing such an understanding.
As a first step, study participants are asked to provide a detailed family history to assess the presence of familial aggregation. If individuals with the disease in question have more relatives affected by the disease than individuals without the disease, familial aggregation is identified. While familial aggregation may be accounted for through genetic etiology, it may also represent an exposure (e.g., pesticides, contaminated drinking water, or diet) common to all family members due to the likelihood of shared environment. Using Genetic Mutations To Cure Heart Disease Essay.
When there is evidence of familial aggregation, the second step is to focus research studies on estimating the heritability of the disease and/or its risk factors. Heritability is defined as the proportion of variation in disease risk in a population that is attributable to unmeasured genetic variations inferred through familial patterns of disease. It is a broad population-based measure of genetic influence that is used to determine whether further genetic studies are warranted, since it allows investigators to test the overarching null hypothesis that no genes are involved in determining disease risk. Twin studies and family studies are frequently used in the study of heritability.
Twin studies comparing the disease and risk factor variability of monozygotic and dizygotic twins have been a common study design used to easily estimate both genetic and cultural inheritance. Studies of monozygotic twins reared together versus those reared apart also have been important in estimating both genetic and environmental contributions to patterns of inheritance. The modeling of the sources of phenotypic variation using family studies has become quite sophisticated, allowing the inclusion of model parameters to represent the additive genetic component (i.e., polygenes), the nonadditive genetic component (i.e., genetic dominance, as well as gene-environment and gene-gene interactions), shared family environment, and individual environments. The contributions of these factors have been shown to vary by age and population.
When significant evidence of genetic involvement is established, the next step is to identify the responsible genes and the mutations that are associated with increased or decreased risk, using either genetic linkage analysis or genetic association studies. For example, in the study of birth defects, this often involves the search for chromosomal deletions, insertions, duplications, or translocations.
GENETIC LINKAGE ANALYSIS AND GENETIC ASSOCIATION STUDIES
The human genome is made up of tens of thousands of genes. With approximately 30,000 genes to choose from, assigning a specific gene or group of genes to a corresponding human disease demands a methodical approach consisting of many steps. Traditionally, the process of gene discovery begins with a linkage analysis that assesses disease within families. Linkage analyses are typically followed by genetic association studies that assess disease across families or across unrelated individuals.
Genetic Linkage Analysis
The term linkage refers to the tendency of genes proximally located on the same chromosome to be inherited together. Linkage analysis is one step in the search for a disease susceptibility gene. The goal of this analysis is to approximate the location of the disease gene in relation to a known genetic marker, applying an understanding of the patterns of linkage. Traditional linkage analysis that traces patterns of heredity of both the disease phenotype and genetic markers in large, high-risk families have been used to locate disease-causing gene mutations such as the breast cancer gene (BRCA1) on chromosome 17 (Hall et al., 1990).
Because the mode of inheritance is often not clear for common diseases, an alternative approach to classic linkage analysis was developed to capitalize on the basic genetic principle that siblings share half of their alleles on average. By investigating the degree of allelic sharing across their genomes, pairs of affected siblings (i.e., two or more siblings with the same disease) can be used to identify chromosomal regions that may contain genes whose variations are related to the disease being studied.Using Genetic Mutations To Cure Heart Disease Essay. If numerous sibling pairs affected by the disease of interest exhibit a greater than expected sharing of the known alleles of the polymorphic genetic marker being used, then the genetic marker is likely to be linked (that is, within close proximity along the chromosome) to the susceptibility gene responsible for the disease being studied. To find chromosomal regions that show evidence for linkage using this affected sibling pair method typically requires typing numerous affected sibships with hundreds of highly polymorphic markers uniformly positioned along the human genome (Mathew, 2001).
This approach has been widely used to identify regions of the genome thought to contribute to common chronic diseases. However, results of linkage analyses have not been consistently replicated. The inability to successfully replicate linkage findings may be a result of insufficient statistical power (that is, including an inadequate number of sibling pairs with the disease of interest) or results that included false positives in the original study. An alternate explanation could be that different populations are affected by different susceptibility genes than those that were studied originally (Mathew, 2001). Without consistent replication of results it is premature to draw conclusions about the contribution of a gene locus to a specific disease.
Upon the confirmation of a linkage, researchers can begin to search the region for the candidate susceptibility gene. The search for a single susceptibility gene for common diseases often involves examination of very large linkage regions, containing 20 to 30 million base pairs and potentially hundreds of genes (Mathew, 2001). It is also important to note, however, that while linkage mapping is a powerful tool for finding Mendelian disease genes, it often produces weak and sometimes inconsistent signals in studies of complex diseases that may be multifactorial. Linkage studies perform best when there is a single susceptibility allele at any given disease locus and generally performs poorly when there is substantial genetic heterogeneity. Using Genetic Mutations To Cure Heart Disease Essay.
Genetic Association Studies
Technological advances in high-throughput genotyping have allowed the direct examination of specific genetic differences among sizable numbers of people. Genetic association techniques are often the most efficient approach for assessing how specific genetic variation can affect disease risk. Genetic association studies, which have been used for decades, have perpetually progressed in terms of the development of new study designs (such as case-only and family-based association designs), new genotyping systems (such as array-based genotyping and multiplexing assays), and new methods used for addressing biases such as population (Haines and Pericak-Vance, 1998).
Analysis of the effects of genetic variation typically involves first the discovery of single nucleotide polymorphisms (SNPs)1 and then the analysis of these variations in samples from populations. SNPs occur on average approximately every 500 to 2,000 bases in the human genome. The most common approach to SNP discovery is to sequence the gene of interest in a representative sample of individuals. Currently, sequencing of entire genes on small numbers of individuals (~25 to 50) can detect polymorphisms occurring in 1 to 3 percent of the population with approximately 95 percent confidence. The Human DNA Polymorphism Discovery Program of the National Institute of Environmental Health Sciences’ Environmental Genome Project is one example of the application of automated DNA sequencing technologies to identify SNPs in human genes that may be associated with disease susceptibility and response to environment (Livingston et al., 2004). The National Heart, Lung, and Blood Institute’s Programs in Genomic Applications also has led to important increases in our knowledge about the distribution of SNPs in key genes thought to be already biologically implicated in disease risk (i.e., biological candidate genes2).
Impressive and rapid advances in SNP analysis technology are rapidly redefining the scope of SNP discovery, mapping, and genotyping. New array-based genotyping technology enables “whole genome association” analyses of SNPs between individuals or between strains of laboratory animal species (Syvanen, 2005). Arrays used for these analyses can represent hundreds of thousands of SNPs mapped across a genome (Klein et al., 2005; Hinds et al., 2005; Gunderson et al., 2005). This approach allows rapid identification of SNPs associated with disease and susceptibility to environmental factors. The strength of this technology is the massive amount of easily measurable genetic variation it puts in the hands of researchers in a cost-effective manner ($500 to $1,000 per chip). Using Genetic Mutations To Cure Heart Disease Essay. The criteria for the selection of SNPs to be included on these arrays are a critical consideration, since they affect the inferences that can be drawn from using these platforms. Of course, the ultimate tool for SNP discovery and genotyping is individual whole genome sequencing. Although not currently feasible, the rapid advancement of technology now being stimulated by the National Human Genome Research Institute’s “$1,000 genome” project likely will make this approach the optimal one for SNP discovery and genotyping in the future.
With the ability to examine large quantities of genetic variations, researchers are moving from investigations of single genes, one at a time, to consideration of entire pathways or physiological systems that include information from genomic, transcriptomic, proteomic, and metabonomic levels that are all subject to different environmental factors (Haines and Pericak-Vance, 1998). However, these genome- and pathway-driven study designs and analytic techniques are still in the early stages of development and will require the joint efforts of multiple disciplines, ranging from molecular biologists to clinicians to social scientists to bioinformaticians, in order to make the most effective use of these vast amounts of data.
GENE-ENVIRONMENT AND GENE-GENE INTERACTIONS
The study of gene-environment and gene-gene interactions represents a broad class of genetic association studies focused on understanding how human genetic variability is associated with differential responses to environmental exposures and with differential effects depending on variations in other genes. To illustrate the concept of gene-environment interactions, recent studies that identify genetic mutations that appear to be associated with differential response to cigarette smoke and its association with lung cancer are reviewed below. Tobacco smoke contains a broad array of chemical carcinogens that may cause DNA damage. There are several DNA repair pathways that operate to repair this damage, and the genes within this pathway are prime biological candidates for understanding why some smokers develop lung cancers but others do not. In a study by Zhou et al. (2003), variations in two genes responsible for DNA repair were examined for their potential interaction with the level of cigarette smoking and concomitant association with lung cancer. Briefly, one putatively functional mutation in the XRCC1 (X-ray cross-complementing group 1) gene and two putatively functional mutations in the ERCC2 (excision repair cross-complementing group 2) gene were genotyped in 1,091 lung cancer cases and 1,240 controls. Using Genetic Mutations To Cure Heart Disease Essay. When the cases and controls were stratified into heavy smokers versus nonsmokers, Zhou et al. (2003)found that nonsmokers with the mutant XRCCI genotype had a 2.4 times greater risk of lung cancer than nonsmokers with the normal genotype. In contrast, heavy smokers with the mutant XRCCI genotype had a 50 percent reduction in lung cancer risk compared to their counterparts with the more frequent normal genotype. When the three mutations from these two genes were examined together in the extreme genotype combination (individual with five or six mutations present in his/her genotype) there was a 5.2 time greater risk of lung cancer in nonsmokers and a 70 percent reduction of risk in the heavy smokers compared to individuals with no mutations. The protective effect of these genetic variations in heavy smokers may be caused by the differential increase in the activity of these protective genes stimulated by heavy smoking. Similar types of gene-smoking interactions also have been found for other genes in this pathway, such as ERCC1. These studies illustrate the importance of identifying the genetic variations that are associated with the differential risk of disease related to human behaviors. Note that this type of research also raises many different kinds of ethical and social issues, since it identifies susceptible subgroups and protected subgroups of subjects by both genetic and human behavior strata (see Chapter 10).
The study by Zhou et al. (2003) also demonstrates the increased information provided by jointly examining the effects of multiple mutations on toxicity-related disease. Other studies of mutations in genes involved in the Phase II metabolism (GSTM1, GSTT1, GSTP1) also have demonstrated the importance of investigating the joint effects of mutations (Miller et al., 2002) on cancer risk. Although these two studies focused on the additive effects of multiple genes, gene-gene interactions are another important component to develop a better understanding of human susceptibility to disease and to interactions with the environment.
To adequately understand the continuum of genomic susceptibility to environmental agents that influences the public’s health, more studies of the joint effects of multiple mutations need to be conducted. Advances in bioinformatics can play a key role in this endeavor. For example, methods to screen SNP databases for mutations in transcriptional regulatory regions can be used for both discovery and functional validation of polymorphic regulatory elements, such as the antioxidant regulatory element found in the promoter regions of many genes encoding antioxidative and Phase II detoxification enzymes (Wang et al., 2005). Comparative sequence analysis methods also are becoming increasingly valuable to human genetic studies, because they provide a means to rank order SNPs in terms of their potential deleterious effects on protein function or gene regulation (Wang et al., 2004). Methods of performing large-scale analysis of nonsynonymous SNPs to predict whether a particular mutation impairs protein function (Clifford et al., 2004) can help in SNP selection for genetic epidemiological studies and can be used to streamline functional analysis of mutations that are found to be statistically associated with differential response to environmental factors such as diet, stress, and socioeconomic factors. Using Genetic Mutations To Cure Heart Disease Essay.
MECHANISMS OF GENE EXPRESSION
Identifying genes whose variations are associated with disease is just the first step in linking genetics and health. Understanding the mechanisms by which the gene is expressed and how it is influenced by other genes, proteins, and the environment is becoming increasingly important to the development of preventive, diagnostic, and therapeutic strategies.
When genes are expressed, the chromosomal DNA must be transcribed into RNA and the RNA is then processed and transported to be translated into protein. Regulating the expression of genes is a vital process in the cell and involves the organization of the chromosomal DNA into an appropriate higher-order chromatin structure. It also involves the action of a host of specific protein factors (to either encourage or suppress gene expression), which can act at different steps in the gene expression pathway.
In all organisms, networks of biochemical reactions and feedback signals organize developmental pathways, cellular metabolism, and progression through the cell cycle. Overall coordination of the cell cycle and cellular metabolism results from feed-forward and feedback controls arising from sets of dependent pathways in which the initiation of events is dependent on earlier events. Using Genetic Mutations To Cure Heart Disease Essay. Within these networks, gene expression is controlled by molecular signals that regulate when, where, and how often a given gene is transcribed. These signals often are stimulated by environmental influences or by signals from other cells that affect the gene expression of many genes through a single regulatory pathway. Since a regulatory gene can act in combination with other signals to control many other genes, complex branching networks of interactions are possible (McAdams and Arkin, 1997).
ORDER A PLAGIARISM-FREE PAPER NOW
Gene regulation is critical because by switching genes on or off when needed, cells can be responsive to changes in environment (e.g., changes in diet or activity) and can prevent resources from being wasted. Variation in the DNA sequences associated with the regulation of a gene’s expression are therefore likely candidates for understanding gene-environment interactions at the molecular level, since these variations will affect whether an environmental signal transduced to the nucleus will successfully bind to the promoter sequence in the gene and stimulate or repress gene expression. Combining genomic technologies for SNP genotyping with high-density gene expression arrays in human studies has only recently elucidated the extent to which this type of molecular gene-environment interaction may be occurring.
Cells also regulate gene expression by post-transcriptional modification; by allowing only a subset of the mRNAs to go on to translation; or by restricting translation of specific mRNAs to only when and where the product is needed. The genetic factors that influence post-transcriptional control are much more difficult to study because they often involve multiprotein complexes not easily retrieved or assayed from cells. At other levels, cells regulate gene expression through epigeneticmechanisms, including DNA folding, histone acetylation, and methylation (i.e., chemical modification) of the nucleotide bases. These mechanisms are likely to be influenced by genetic variations in the target genes as well as variations manifested in translated cellular regulatory proteins. Gene regulation occurs throughout life at all levels of organismal development and aging. Using Genetic Mutations To Cure Heart Disease Essay.